Toggle navigation sidebar
Toggle in-page Table of Contents
计算机科学路线图
目录
Awesome-Road-Map
1.Fundamentals
2.Data Science
3.Machine Learning
4.Deep Learning
5.Data Learning
6.Big Data
LearnList
Microsoft
Meta(facebook)
Intel
Google
Apple
Amazon
NVIDIA
Kaggle
HUAWEI-Cloud
HUAWEI-Mindspore
Baidu-PaddlePaddle
Baidu-Bit
Alibaba-TianChi
Alibaba-Cloud
Tencent-Cloud
Mooc
OpenL
repository
open issue
suggest edit
.md
.pdf
Contents
6.Big Data
6、大数据(BIg data)
6.1 大数据架构(BIg Data Architectures)
(1) 架构模式和最佳实践(Architectural Patterns & Best Practices)
6.2 原则(Principles)
(1) 水平竖直缩放(Horizontal vs Vertical Scaling)
(2) Apache Hadoop- MapReduce
(3) 数据复制(Data Replication)
(4) 名称节点与数据节点(Hadoop Name & Data Noddes)
(5) 工作和任务跟踪器(Job & Task Tracker)
6.3 工具(Tools)
(1) Check the Awesome Big Data List
(2) Hadoop(Large Data)
(3) Spark(in memory)
(4) RAPIDS(On GPU)
(5) Flume,Scribe:For Unstruct Data
(6) Data Warehouse with Hive
(7) Elastic(ELK)Stack
(8) Avro
(9) Flink
(10) Numba
(11) Onnx
(12) OpenVINO
(13) MLFlow
(14) Kafka & KSQL
(15) Databases
1.Cassandra
2.MongoDB,Neo4j
3.AWS SageMaker
4.Google ML Engine
5.Microsoft Azure Machine Learning Studio
(16) Scalability
1.ZooKeeper
2.Kubernetes
(17) Cloud Services
(18) Awesome Production ML
6.Big Data
Contents
6.Big Data
6、大数据(BIg data)
6.1 大数据架构(BIg Data Architectures)
(1) 架构模式和最佳实践(Architectural Patterns & Best Practices)
6.2 原则(Principles)
(1) 水平竖直缩放(Horizontal vs Vertical Scaling)
(2) Apache Hadoop- MapReduce
(3) 数据复制(Data Replication)
(4) 名称节点与数据节点(Hadoop Name & Data Noddes)
(5) 工作和任务跟踪器(Job & Task Tracker)
6.3 工具(Tools)
(1) Check the Awesome Big Data List
(2) Hadoop(Large Data)
(3) Spark(in memory)
(4) RAPIDS(On GPU)
(5) Flume,Scribe:For Unstruct Data
(6) Data Warehouse with Hive
(7) Elastic(ELK)Stack
(8) Avro
(9) Flink
(10) Numba
(11) Onnx
(12) OpenVINO
(13) MLFlow
(14) Kafka & KSQL
(15) Databases
1.Cassandra
2.MongoDB,Neo4j
3.AWS SageMaker
4.Google ML Engine
5.Microsoft Azure Machine Learning Studio
(16) Scalability
1.ZooKeeper
2.Kubernetes
(17) Cloud Services
(18) Awesome Production ML
6.Big Data
#
6、大数据(BIg data)
#
6.1 大数据架构(BIg Data Architectures)
#
(1) 架构模式和最佳实践(Architectural Patterns & Best Practices)
#
6.2 原则(Principles)
#
(1) 水平竖直缩放(Horizontal vs Vertical Scaling)
#
(2) Apache Hadoop- MapReduce
#
(3) 数据复制(Data Replication)
#
(4) 名称节点与数据节点(Hadoop Name & Data Noddes)
#
(5) 工作和任务跟踪器(Job & Task Tracker)
#
6.3 工具(Tools)
#
(1) Check the Awesome Big Data List
#
(2) Hadoop(Large Data)
#
(3) Spark(in memory)
#
(4) RAPIDS(On GPU)
#
(5) Flume,Scribe:For Unstruct Data
#
(6) Data Warehouse with Hive
#
(7) Elastic(ELK)Stack
#
(8) Avro
#
(9) Flink
#
(10) Numba
#
(11) Onnx
#
(12) OpenVINO
#
(13) MLFlow
#
(14) Kafka & KSQL
#
(15) Databases
#
1.Cassandra
#
2.MongoDB,Neo4j
#
3.AWS SageMaker
#
4.Google ML Engine
#
5.Microsoft Azure Machine Learning Studio
#
(16) Scalability
#
1.ZooKeeper
#
2.Kubernetes
#
(17) Cloud Services
#
(18) Awesome Production ML
#