Toggle navigation sidebar
Toggle in-page Table of Contents
计算机科学路线图
目录
Awesome-Road-Map
1.Fundamentals
2.Data Science
3.Machine Learning
4.Deep Learning
5.Data Learning
6.Big Data
LearnList
Microsoft
Meta(facebook)
Intel
Google
Apple
Amazon
NVIDIA
Kaggle
HUAWEI-Cloud
HUAWEI-Mindspore
Baidu-PaddlePaddle
Baidu-Bit
Alibaba-TianChi
Alibaba-Cloud
Tencent-Cloud
Mooc
OpenL
repository
open issue
suggest edit
.md
.pdf
Contents
4.Deep Learning
4、深度学习(Deep Learning)
4.1 论文(Papers)
(1) Deep Learning Papers Reading Roadmap
(2) Paper with code
(3) Paper with code-state of the art
4.2神经网络(Neural Networks)
(1) 理解神经网络(Understanding Neural Networks)
(2) 损失函数(Loss Functions)
(3) 激活函数(Activation Functions)
(4) 权重初始化(Weight Initialization)
(5) 梯度消失/爆炸问题(Vanishing/Exploding Gradient Problem)
4.3 结构(Architectures)
(1) 前馈神经网络(Feedforward Neural Network)
(2) 自编码器(Autoencoder)
(3) 卷积神经网络(CNN,Convolutional Neural Network)
(4) 循环神经网络(Recurrent Neural Network)
(5) Transformer
(6) 孪生神经网络(Siamese Network)
(7) 对抗生成网络(GAN,Generative Adversarial Network)
(8) 进化发展结构(Evolving Architectures /NEAT)
(9) 残差连接(Residual Connections)
4.4 训练(Training)
(1) 优化器(Optimizers)
(2) 学习率调度器(Learning Rate Schedule)
(3) 批量归一化(Batch Normalization)
(4) 批量大小影响(Batch Size Effects)
(5) 正则化(Regularization)
(6) 多任务学习(Multitask Learning)
(7) 迁移学习(Transfer Learning)
(8) 课程学习(Curriculum Learning)
4.5 工具框架(Tools&Frame)
(1) Important Libraries
a.Awesome Deep Learning
b.Huggingface Transformers
(2) TensorFlow
(3) Pytorch
(4) TensorBoard
(5) MLFlow
4.6 高级模型优化(Model optimization advanced)
(1) 蒸馏(Distillation)
(2) 量化(Quantization)
(3) 神经架构搜索(NAS,Neural Architecture Search)
4.Deep Learning
Contents
4.Deep Learning
4、深度学习(Deep Learning)
4.1 论文(Papers)
(1) Deep Learning Papers Reading Roadmap
(2) Paper with code
(3) Paper with code-state of the art
4.2神经网络(Neural Networks)
(1) 理解神经网络(Understanding Neural Networks)
(2) 损失函数(Loss Functions)
(3) 激活函数(Activation Functions)
(4) 权重初始化(Weight Initialization)
(5) 梯度消失/爆炸问题(Vanishing/Exploding Gradient Problem)
4.3 结构(Architectures)
(1) 前馈神经网络(Feedforward Neural Network)
(2) 自编码器(Autoencoder)
(3) 卷积神经网络(CNN,Convolutional Neural Network)
(4) 循环神经网络(Recurrent Neural Network)
(5) Transformer
(6) 孪生神经网络(Siamese Network)
(7) 对抗生成网络(GAN,Generative Adversarial Network)
(8) 进化发展结构(Evolving Architectures /NEAT)
(9) 残差连接(Residual Connections)
4.4 训练(Training)
(1) 优化器(Optimizers)
(2) 学习率调度器(Learning Rate Schedule)
(3) 批量归一化(Batch Normalization)
(4) 批量大小影响(Batch Size Effects)
(5) 正则化(Regularization)
(6) 多任务学习(Multitask Learning)
(7) 迁移学习(Transfer Learning)
(8) 课程学习(Curriculum Learning)
4.5 工具框架(Tools&Frame)
(1) Important Libraries
a.Awesome Deep Learning
b.Huggingface Transformers
(2) TensorFlow
(3) Pytorch
(4) TensorBoard
(5) MLFlow
4.6 高级模型优化(Model optimization advanced)
(1) 蒸馏(Distillation)
(2) 量化(Quantization)
(3) 神经架构搜索(NAS,Neural Architecture Search)
4.Deep Learning
#
4、深度学习(Deep Learning)
#
4.1 论文(Papers)
#
(1) Deep Learning Papers Reading Roadmap
#
(2) Paper with code
#
(3) Paper with code-state of the art
#
4.2神经网络(Neural Networks)
#
(1) 理解神经网络(Understanding Neural Networks)
#
(2) 损失函数(Loss Functions)
#
(3) 激活函数(Activation Functions)
#
(4) 权重初始化(Weight Initialization)
#
(5) 梯度消失/爆炸问题(Vanishing/Exploding Gradient Problem)
#
4.3 结构(Architectures)
#
(1) 前馈神经网络(Feedforward Neural Network)
#
(2) 自编码器(Autoencoder)
#
(3) 卷积神经网络(CNN,Convolutional Neural Network)
#
(4) 循环神经网络(Recurrent Neural Network)
#
(5) Transformer
#
(6) 孪生神经网络(Siamese Network)
#
(7) 对抗生成网络(GAN,Generative Adversarial Network)
#
(8) 进化发展结构(Evolving Architectures /NEAT)
#
(9) 残差连接(Residual Connections)
#
4.4 训练(Training)
#
(1) 优化器(Optimizers)
#
(2) 学习率调度器(Learning Rate Schedule)
#
(3) 批量归一化(Batch Normalization)
#
(4) 批量大小影响(Batch Size Effects)
#
(5) 正则化(Regularization)
#
(6) 多任务学习(Multitask Learning)
#
(7) 迁移学习(Transfer Learning)
#
(8) 课程学习(Curriculum Learning)
#
4.5 工具框架(Tools&Frame)
#
(1) Important Libraries
#
a.Awesome Deep Learning
#
b.Huggingface Transformers
#
(2) TensorFlow
#
(3) Pytorch
#
(4) TensorBoard
#
(5) MLFlow
#
4.6 高级模型优化(Model optimization advanced)
#
(1) 蒸馏(Distillation)
#
(2) 量化(Quantization)
#
(3) 神经架构搜索(NAS,Neural Architecture Search)
#