Toggle navigation sidebar
Toggle in-page Table of Contents
计算机科学路线图
目录
Awesome-Road-Map
1.Fundamentals
2.Data Science
3.Machine Learning
4.Deep Learning
5.Data Learning
6.Big Data
LearnList
Microsoft
Meta(facebook)
Intel
Google
Apple
Amazon
NVIDIA
Kaggle
HUAWEI-Cloud
HUAWEI-Mindspore
Baidu-PaddlePaddle
Baidu-Bit
Alibaba-TianChi
Alibaba-Cloud
Tencent-Cloud
Mooc
OpenL
repository
open issue
suggest edit
.md
.pdf
Contents
3.Machine Learning
3、机器学习(Machine Learning)
3.1 综述概览(General)
(1) 概念、输入和属性(Concepts,Inputs & Attributes)
1.分类变量(Categorical Variables)
2.有序变量(Ordinal Variable)
3.数值变量(Numerical Variable)
(2) 代价函数和梯度下降(Cost functions and Gradient Descent)
(3) 过拟合/欠拟合(Overfitting/underfitting)
(4) 训练、验证和测试数据(Training,Validation and test data)
(5) 精度和召回(Precision vs Recall)
(6) 偏差和方差(Bias & Variance)
(7) 优化提升(Model Lift)
3.2 方法(Method)
(1) 监督学习(Supervised Learning)
1.回归(Regression)
a.线性回归(Linear Regression)
b.泊松回归(Poisson Regression)
2.分类(Classification)
a.正确分类率(Classification Rate)
b.决策树(Decision Trees)
c.逻辑回归(Logistic Regression)
d.朴素贝叶斯分类器(Naive Bayes Classifiers)
e.K-最近邻(K-Nearest Neighbour)
f.支持向量机(Support Vector Machine)
(2) 无监督学习(Unsupervised Learning)
1.关联规则学习(Association Rule Learning)
a.先验算法(Apriori Algorithm)
b.ECLAT算法(ECLAT Algorithm)
c.频繁模式树(FP-Tree,Frequent-Pattern tree)
2.降维(Dimensionality Reduction)
a.主成分分析(PCA,Principal component analysis)
b.随机投影(Random Projection)
c.非负矩阵分解(NMF,Non-negative matrix factorization)
d.t-分布式随机邻域嵌入(T-SNE,t-Distributed Stochastic Neighbor Embedding )
e.一致流形近似和投影(UMAP,Uniform Manifold Approximation and Projection)
(3) 集成学习(Ensemble Learning)
1.提升方法(Boosting)
2.装袋算法(Bagging,Bootstrap aggregating)
3.堆叠(Stacking)
(4) 强化学习(Reinforcement Learning)
Q-Learning
3.3 用例(Use Cases)
(1) 情绪分析(Sentiment Analysis)
(2) 协同过滤(Collaborative Filtering)
(3)标注(tagging)
(4)预测(Prediction)
3.4 工具(Tools)
(1)I重要库(mportant Libraries)
1.Scikit-Learn
2.Spacy(NLP)
3.Machine Learning
Contents
3.Machine Learning
3、机器学习(Machine Learning)
3.1 综述概览(General)
(1) 概念、输入和属性(Concepts,Inputs & Attributes)
1.分类变量(Categorical Variables)
2.有序变量(Ordinal Variable)
3.数值变量(Numerical Variable)
(2) 代价函数和梯度下降(Cost functions and Gradient Descent)
(3) 过拟合/欠拟合(Overfitting/underfitting)
(4) 训练、验证和测试数据(Training,Validation and test data)
(5) 精度和召回(Precision vs Recall)
(6) 偏差和方差(Bias & Variance)
(7) 优化提升(Model Lift)
3.2 方法(Method)
(1) 监督学习(Supervised Learning)
1.回归(Regression)
a.线性回归(Linear Regression)
b.泊松回归(Poisson Regression)
2.分类(Classification)
a.正确分类率(Classification Rate)
b.决策树(Decision Trees)
c.逻辑回归(Logistic Regression)
d.朴素贝叶斯分类器(Naive Bayes Classifiers)
e.K-最近邻(K-Nearest Neighbour)
f.支持向量机(Support Vector Machine)
(2) 无监督学习(Unsupervised Learning)
1.关联规则学习(Association Rule Learning)
a.先验算法(Apriori Algorithm)
b.ECLAT算法(ECLAT Algorithm)
c.频繁模式树(FP-Tree,Frequent-Pattern tree)
2.降维(Dimensionality Reduction)
a.主成分分析(PCA,Principal component analysis)
b.随机投影(Random Projection)
c.非负矩阵分解(NMF,Non-negative matrix factorization)
d.t-分布式随机邻域嵌入(T-SNE,t-Distributed Stochastic Neighbor Embedding )
e.一致流形近似和投影(UMAP,Uniform Manifold Approximation and Projection)
(3) 集成学习(Ensemble Learning)
1.提升方法(Boosting)
2.装袋算法(Bagging,Bootstrap aggregating)
3.堆叠(Stacking)
(4) 强化学习(Reinforcement Learning)
Q-Learning
3.3 用例(Use Cases)
(1) 情绪分析(Sentiment Analysis)
(2) 协同过滤(Collaborative Filtering)
(3)标注(tagging)
(4)预测(Prediction)
3.4 工具(Tools)
(1)I重要库(mportant Libraries)
1.Scikit-Learn
2.Spacy(NLP)
3.Machine Learning
#
3、机器学习(Machine Learning)
#
3.1 综述概览(General)
#
(1) 概念、输入和属性(Concepts,Inputs & Attributes)
#
1.分类变量(Categorical Variables)
#
2.有序变量(Ordinal Variable)
#
3.数值变量(Numerical Variable)
#
(2) 代价函数和梯度下降(Cost functions and Gradient Descent)
#
(3) 过拟合/欠拟合(Overfitting/underfitting)
#
(4) 训练、验证和测试数据(Training,Validation and test data)
#
(5) 精度和召回(Precision vs Recall)
#
(6) 偏差和方差(Bias & Variance)
#
(7) 优化提升(Model Lift)
#
3.2 方法(Method)
#
(1) 监督学习(Supervised Learning)
#
1.回归(Regression)
#
a.线性回归(Linear Regression)
#
b.泊松回归(Poisson Regression)
#
2.分类(Classification)
#
a.正确分类率(Classification Rate)
#
b.决策树(Decision Trees)
#
c.逻辑回归(Logistic Regression)
#
d.朴素贝叶斯分类器(Naive Bayes Classifiers)
#
e.K-最近邻(K-Nearest Neighbour)
#
f.支持向量机(Support Vector Machine)
#
(2) 无监督学习(Unsupervised Learning)
#
1.关联规则学习(Association Rule Learning)
#
a.先验算法(Apriori Algorithm)
#
b.ECLAT算法(ECLAT Algorithm)
#
c.频繁模式树(FP-Tree,Frequent-Pattern tree)
#
2.降维(Dimensionality Reduction)
#
a.主成分分析(PCA,Principal component analysis)
#
b.随机投影(Random Projection)
#
c.非负矩阵分解(NMF,Non-negative matrix factorization)
#
d.t-分布式随机邻域嵌入(T-SNE,t-Distributed Stochastic Neighbor Embedding )
#
e.一致流形近似和投影(UMAP,Uniform Manifold Approximation and Projection)
#
(3) 集成学习(Ensemble Learning)
#
1.提升方法(Boosting)
#
2.装袋算法(Bagging,Bootstrap aggregating)
#
3.堆叠(Stacking)
#
(4) 强化学习(Reinforcement Learning)
#
Q-Learning
#
3.3 用例(Use Cases)
#
(1) 情绪分析(Sentiment Analysis)
#
(2) 协同过滤(Collaborative Filtering)
#
(3)标注(tagging)
#
(4)预测(Prediction)
#
3.4 工具(Tools)
#
(1)I重要库(mportant Libraries)
#
1.Scikit-Learn
#
2.Spacy(NLP)
#