目标检测(OBJ)#
Num |
Title |
Field |
Desc |
Author |
Time |
read |
---|---|---|---|---|---|---|
Rich feature hierarchies for accurate object detection and semantic segmentation |
目标检测 |
R-CNN |
||||
Fast R-CNN |
目标检测 |
Fast R-CNN |
||||
Faster R-CNN:Towards Real-Time Object |
目标检测 |
Faster R-CNN |
||||
Mask R-CNN |
目标检测 |
Mask R-CNN |
||||
SSD:Single Shot MultiBox Detector |
目标检测 |
SSD |
||||
Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems |
目标检测 |
Mobilenet-SSDv2 |
||||
Feature Pyramid Networks for Object Detection |
目标检测 |
FPN |
||||
Fully Convolutional Networks for Semantic Segmentation |
图像分割 |
FCN |
||||
FCOS: Fully Convolutional One-Stage Object Detection |
目标检测 |
FCOS |
||||
Focal Loss for Dense Object Detection |
目标检测 |
RetinaNet |
||||
Bag of Freebies for Training Object Detection Neural Networks |
目标检测 |
|||||
You Only Look One-Unified, Real-Time Object Detection |
目标检测 |
YOLOv1 |
||||
YOLO9000:Better, Faster, Stronger |
目标检测 |
YOLOv2 |
||||
YOLOv3:An Incremental Improvement |
目标检测 |
YOLOv3 |
||||
YOLOv4:Optimal Speed and Accuracy of Object Detection |
目标检测 |
YOLOv4 |
||||
PP-YOLO:An Effective and Efficient Implementation of Object Detector |
目标检测 |
PP-YOLO |
||||
PP-YOLOv2:A Practical Object Detector |
目标检测 |
PP-YOLO2 |
||||
YOLOv4: Optimal Speed and Accuracy of Object Detection |
目标检测 |
YOLOv4 |
||||
YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications |
目标检测 |
YOLOv6 |
||||
YOLOv6 v3.0: A Full-Scale Reloading |
目标检测 |
YOLOv6 v3.0 |
||||
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors |
目标检测 |
YOLOv7 |
||||
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information |
目标检测 |
YOLOv9 |
||||
YOLOv10: Real-Time End-to-End Object Detection |
目标检测 |
YOLOv10 |
||||
YOLOX: Exceeding YOLO Series in 2021 |
目标检测 |
YOLOX |
||||
YOLOF: You Only Look One-level Feature |
目标检测 |
YOLOF |
||||
YOLOP: You Only Look Once for Panoptic Driving Perception |
目标检测 |
YOLOP |
||||
YOLOR: BASED MULTI-TASK LEARNING |
目标检测 |
YOLOR |
||||
YOLOS: You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection |
目标检测 |
YOLOS |
||||
YOLOOC: YOLO-based Open-Class Incremental Object Detection with Novel Class Discovery |
目标检测 |
YOLOOC |
||||
Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection |
目标检测 |
ATSS |
||||
Learning Spatial Fusion for Single-Shot Object Detection |
目标检测 |
ASFF |
||||
Cascade R-CNN: Delving into High Quality Object Detection |
目标检测 |
Cascade-RCNN |
||||
CenterMask: Real-Time Anchor-Free Instance Segmentation |
目标检测 |
CenterMask |
||||
DAMO-YOLO : A Report on Real-Time Object Detection Design |
目标检测 |
DAMO-YOLO |
||||
End-to-End Object Detection with Transformers |
目标检测 |
DETR |
||||
DynamicDet: A Unified Dynamic Architecture for Object Detection |
目标检测 |
DY-yolov7 |
||||
Edge YOLO: Real-Time Intelligent Object Detection System Based on Edge-Cloud Cooperation in Autonomous Vehicles |
目标检测 |
Edge-YOLO |
||||
EfficientDet: Scalable and Efficient Object Detection |
目标检测 |
EfficientDet |
||||
FemtoDet: An Object Detection Baseline for Energy Versus Performance Tradeoffs |
目标检测 |
FemtoDet |
||||
Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism |
目标检测 |
Gold-YOLO |
||||
MDETR - Modulated Detection for End-to-End Multi-Modal Understanding |
目标检测 |
MDETR |
||||
Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems |
目标检测 |
Mobilenet-SSDv2 |
||||
MS-DAYOLO |
||||||
OneNet: Towards End-to-End One-Stage Object Detection |
OneNet |
|||||
Simple Open-Vocabulary Object Detection with Vision Transformers |
OWL-ViT |
|||||
Scaling Open-Vocabulary Object Detection |
OWLv2 |
|||||
PP-YOLO: An Effective and Efficient Implementation of Object Detector |
PP-YOLOv1 |
|||||
PP-YOLOv2: A Practical Object Detector |
PP-YOLOv2 |
|||||
R-FCN: Object Detection via Region-based Fully Convolutional Networks |
R-FCN |
|||||
Rich feature hierarchies for accurate object detection and semantic segmentation |
RCNN |
|||||
RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation |
RDSNet |
|||||
Focal Loss for Dense Object Detection |
RetinaNet |
|||||
Focal Loss for Dense Object Detection |
RT-DETR |
|||||
RTMDet: An Empirical Study of Designing Real-Time Object Detectors |
RTMDet |
|||||
Side-Aware Boundary Localization for More Precise Object Detection |
SABL |
|||||
Scaled-YOLOv4: Scaling Cross Stage Partial Network |
Scaled-YOLOv4 |
|||||
Simple Multi-dataset Detection |
Simple Multi-dataset Detection |
|||||
SM-NAS: Structural-to-Modular Neural Architecture Search for Object Detection |
SM-NAS |
|||||
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals |
Sparse R-CNN |
|||||
Sparse Instance Activation for Real-Time Instance Segmentation |
SparseInst |
|||||
VarifocalNet: An IoU-aware Dense Object Detector |
VarifocalNet |
|||||
ViT-YOLO: Transformer-Based YOLO for Object Detection |
ViT-YOLO |
|||||
YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection |
YOLO-MS |
|||||
YOLO-World: Real-Time Open-Vocabulary Object Detection |
YOLO-World |
|||||
High-Performance Fine Defect Detection in Artificial Leather Using Dual Feature Pool Object Detection |
YOLOD |
|||||
You Only Look One-level Feature |
YOLOF |
|||||
YOLOOC |
YOLOOC |
|||||
YOLOP: You Only Look Once for Panoptic Driving Perception |
YOLOP |
|||||
YOLOR-BASED MULTI-TASK LEARNING |
YOLOR |
|||||
You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection |
YOLOS |
|||||