course-list-en#
[TOC]
1.Deep Learning (Deep Neural Networks)#
深度学习(Deep Neural Networks)
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Neural Networks for Machine Learning 机器学习的神经网络 |
Geoffrey Hinton, University of Toronto杰弗里欣顿,多伦多大学 |
2012 2014 |
||
2. |
Neural Networks Demystified 神经网络揭秘 |
Stephen Welch, Welch LabsStephen Welch,Welch Labs(作者) |
2014 |
||
3. |
Deep Learning at Oxford 牛津大学的深度学习 |
Nando de Freitas, Oxford UniversityNando de Freitas,牛津大学 |
2015 |
||
4. |
Deep Learning for Perception 深度学习感知 |
Dhruv Batra, Virginia TechDhruv Batra,弗吉尼亚理工大学 |
2015 |
||
5. |
Deep Learning 深度学习 |
Ali Ghodsi, University of WaterlooAli Ghodsi,滑铁卢大学 |
F2015 |
||
6. |
CS231n: CNNs for Visual Recognition CS231n:用于视觉识别的CNN |
Andrej Karpathy, Stanford UniversityAndrej Karpathy,斯坦福大学 |
|
2015 |
|
7. |
CS224d: Deep Learning for NLP CS224d:深度学习NLP |
Richard Socher, Stanford UniversityRichard Socher,斯坦福大学 |
2015 |
||
8. |
Bay Area Deep Learning 湾区深度学习 |
Many legends, Stanford很多传奇人物,斯坦福大学 |
|
2016 |
|
9. |
CS231n: CNNs for Visual Recognition CS231n:用于视觉识别的CNN |
Andrej Karpathy, Stanford UniversityAndrej Karpathy,斯坦福大学 |
YouTube-Lectures (Academic Torrent) YouTube-Lectures (Academic Torrent) |
2016 |
|
10. |
Neural Networks 神经网络 |
Hugo Larochelle, Université de SherbrookeHugo Larochelle,舍布鲁克大学 |
YouTube-Lectures (Academic Torrent) YouTube-Lectures (Academic Torrent) |
2016 |
|
11. |
CS224d: Deep Learning for NLP CS224d:深度学习NLP |
Richard Socher, Stanford UniversityRichard Socher,斯坦福大学 |
YouTube-Lectures (Academic Torrent) YouTube-Lectures (Academic Torrent) |
2016 |
|
12. |
CS224n: NLP with Deep Learning CS224n:NLP与深度学习 |
Richard Socher, Stanford UniversityRichard Socher,斯坦福大学 |
2017 |
||
13. |
CS231n: CNNs for Visual Recognition CS231n:用于视觉识别的CNN |
Justin Johnson, Stanford University贾斯汀约翰逊,斯坦福大学 |
YouTube-Lectures (Academic Torrent) YouTube-Lectures (Academic Torrent) |
2017 |
|
14. |
Topics in Deep Learning 深度学习主题 |
Ruslan Salakhutdinov, CMURuslan Salakhutdinov,CMU |
F2017 |
||
15. |
Deep Learning Crash Course 深度学习速成班 |
Leo Isikdogan, UT AustinLeo Isikdogan,UT Austin |
|
2017 |
|
16. |
Deep Learning and its Applications 深度学习及其应用 |
François Pitié, Trinity College DublinFrancois Pitié,都柏林三一学院 |
2017 |
||
17. |
Deep Learning 深度学习 |
Andrew Ng, Stanford University吴恩达,斯坦福大学 |
2018 |
||
18. |
UvA Deep Learning UvA深度学习 |
Efstratios Gavves, University of AmsterdamEfstratios Gavves,阿姆斯特丹大学 |
2018 |
||
19. |
Advanced Deep Learning and Reinforcement Learning 高级深度学习和强化学习 |
Many legends, DeepMind许多传奇,DeepMind |
|
2018 |
|
20. |
Machine Learning 机器学习 |
Peter Bloem, Vrije Universiteit AmsterdamPeter Bloem,阿姆斯特丹自由大学 |
2018 |
||
21. |
Deep Learning 深度学习 |
Francois Fleuret, EPFLFrancois Fleuret,EPFL |
2018 |
||
22. |
Introduction to Deep Learning 深度学习简介 |
Alexander Amini, Harini Suresh and others, MIT亚历山大阿米尼,哈里尼苏雷什和其他人,麻省理工学院 |
2017- 20212017- 2021年 |
||
23. |
Deep Learning for Self-Driving Cars 自动驾驶汽车的深度学习 |
Lex Fridman, MIT莱克斯·弗里德曼,麻省理工 |
2017-2018 |
||
24. |
Introduction to Deep Learning 深度学习简介 |
Bhiksha Raj and many others, CMUBhiksha Raj和许多其他人,CMU |
S2018 |
||
25. |
Introduction to Deep Learning 深度学习简介 |
Bhiksha Raj and many others, CMUBhiksha Raj和许多其他人,CMU |
YouTube-Lectures Recitation-Inclusive YouTube-Lectures 背诵-包括 |
F2018 |
|
26. |
Deep Learning Specialization 深度学习专业 |
Andrew Ng, Stanford吴恩达,斯坦福大学 |
2017-2018 |
||
27. |
Deep Learning 深度学习 |
Ali Ghodsi, University of WaterlooAli Ghodsi,滑铁卢大学 |
F2017F2017年 |
||
28. |
Deep Learning 深度学习 |
Mitesh Khapra, IIT-MadrasMitesh Khapra,IIT-Madras |
2018 |
||
29. |
Deep Learning for AI AI的深度学习 |
UPC BarcelonaUPC巴塞罗那 |
2017-2018 |
||
30. |
Deep Learning 深度学习 |
Alex Bronstein and Avi Mendelson, TechnionAlex Bronstein和Avi Mendelson,Technion |
2018 |
||
31. |
MIT Deep Learning MIT深度学习 |
Many Researchers, Lex Fridman, MIT许多研究人员,Lex Fridman,MIT |
2019 |
||
32. |
Deep Learning Book companion videos 深度学习书籍配套视频 |
Ian Goodfellow and othersIan Goodfellow和其他人 |
2017 |
||
33. |
Theories of Deep Learning 深度学习理论 |
Many Legends, Stanford多个传奇,斯坦福大学 |
YouTube-Lectures (first 10 lectures) YouTube-Lectures (前10个讲座) |
F2017F2017年 |
|
34. |
Neural Networks 神经网络 |
Grant Sanderson格兰特·桑德森 |
|
2017-2018 |
|
35. |
CS230: Deep Learning CS230:深度学习 |
Andrew Ng, Kian Katanforoosh, StanfordAndrew Ng,Kian Katanforoosh,斯坦福大学 |
A2018 |
||
36. |
Theory of Deep Learning 深度学习理论 |
Lots of Legends, Canary Islands很多传说,加那利群岛 |
2018 |
||
37. |
Introduction to Deep Learning 深度学习简介 |
Alex Smola, UC Berkeley艾力克斯摩拉加州大学伯克利分校 |
S2019 |
||
38. |
Deep Unsupervised Learning 深度无监督学习 |
Pieter Abbeel, UC BerkeleyPieter Abbeel,加州大学伯克利分校 |
S2019 |
||
39. |
Machine Learning 机器学习 |
Peter Bloem, Vrije Universiteit AmsterdamPeter Bloem,阿姆斯特丹自由大学 |
2019 |
||
40. |
Deep Learning on Computational Accelerators 计算加速器上的深度学习 |
Alex Bronstein and Avi Mendelson, TechnionAlex Bronstein和Avi Mendelson,Technion |
S2019 |
||
41. |
Introduction to Deep Learning 深度学习简介 |
Bhiksha Raj and many others, CMUBhiksha Raj和许多其他人,CMU |
S2019 |
||
42. |
Introduction to Deep Learning 深度学习简介 |
Bhiksha Raj and many others, CMUBhiksha Raj和许多其他人,CMU |
F2019 |
||
43. |
UvA Deep Learning UvA深度学习 |
Efstratios Gavves, University of AmsterdamEfstratios Gavves,阿姆斯特丹大学 |
S2019 |
||
44. |
Deep Learning 深度学习 |
Prabir Kumar Biswas, IIT KgpPrabir Kumar Biswas,IIT Kgp |
|
2019 |
|
45. |
Deep Learning and its Applications 深度学习及其应用 |
Aditya Nigam, IIT MandiAditya Nigam,IIT Mandi |
2019 |
||
46. |
Neural Networks 神经网络 |
Neil Rhodes, Harvey Mudd College尼尔罗兹,哈维穆德学院 |
F2019 |
||
47. |
Deep Learning 深度学习 |
Thomas Hofmann, ETH ZürichThomas Hofmann,苏黎世ETH |
F2019 |
||
48. |
Deep Learning 深度学习 |
Milan Straka, Charles University米兰·斯特拉卡,查尔斯大学 |
S2019 |
||
49. |
UvA Deep Learning UvA深度学习 |
Efstratios Gavves, University of AmsterdamEfstratios Gavves,阿姆斯特丹大学 |
F2019 |
||
50. |
Artificial Intelligence: Principles and Techniques 人工智能:原理与技术 |
Percy Liang and Dorsa Sadigh, Stanford University珀西梁和Dorsa Sadigh,斯坦福大学 |
F2019 |
||
51. |
Analyses of Deep Learning 深度学习分析 |
Lots of Legends, Stanford University很多传奇人物,斯坦福大学 |
2017-2019 |
||
52. |
Deep Learning Foundations and Applications 深度学习基础与应用 |
Debdoot Sheet and Sudeshna Sarkar, IIT-KgpDebdoot Sheet和Sudeshna Sarkar,IIT-Kgp |
S2020 |
||
53. |
Designing, Visualizing, and Understanding Deep Neural Networks 设计、可视化和理解深度神经网络 |
John Canny, UC Berkeley约翰·坎尼,加州大学伯克利分校 |
S2020 |
||
54. |
Deep Learning 深度学习 |
Yann LeCun and Alfredo Canziani, NYUYann LeCun和Alfredo Canziani,纽约大学 |
S2020 |
||
55. |
Introduction to Deep Learning 深度学习简介 |
Bhiksha Raj, CMUBhiksha Raj,CMU |
S2020 |
||
56. |
Deep Unsupervised Learning 深度无监督学习 |
Pieter Abbeel, UC BerkeleyPieter Abbeel,加州大学伯克利分校 |
S2020 |
||
57. |
Machine Learning 机器学习 |
Peter Bloem, Vrije Universiteit AmsterdamPeter Bloem,阿姆斯特丹自由大学 |
S2020 |
||
58. |
Deep Learning (with PyTorch) 深度学习(使用PyTorch) |
Alfredo Canziani and Yann LeCun, NYUAlfredo Cantici和Yann LeCun,纽约 |
S2020 |
||
59. |
Introduction to Deep Learning and Generative Models 深度学习和生成模型简介 |
Sebastian Raschka, UW-Madison塞巴斯蒂安拉施卡,威斯康星大学麦迪逊分校 |
S2020 |
||
60. |
Deep Learning 深度学习 |
Andreas Maier, FAU Erlangen-NürnbergAndreas Maier,FAU埃尔兰根—纽伦堡 |
SS2020 |
||
61. |
Introduction to Deep Learning 深度学习简介 |
Laura Leal-Taixé and Matthias Niessner, TU-MünchenLaura Leal—Taixé和Matthias Niessner,德国慕尼黑大学 |
SS2020 |
||
62. |
Deep Learning 深度学习 |
Sargur Srihari, SUNY-BuffaloSaur Srihari,纽约州立大学布法罗分校 |
YouTube-Lectures-P1 YouTube-Lectures-P2 YouTube-讲座-P1 YouTube-讲座-P2 |
2020 |
|
63. |
Deep Learning Lecture Series 深度学习系列讲座 |
Lots of Legends, DeepMind x UCL, LondonLots of Legends,DeepMind x UCL,伦敦 |
2020 |
||
64. |
MultiModal Machine Learning 多模态机器学习 |
Louis-Philippe Morency & others, Carnegie Mellon UniversityLouis-Philippe Mohammed & others,卡内基梅隆大学 |
F2020 |
||
65. |
Reliable and Interpretable Artificial Intelligence 可靠和可解释的人工智能 |
Martin Vechev, ETH ZürichMartin Vechev,ETH苏黎世 |
F2020 |
||
66. |
Fundamentals of Deep Learning 深度学习基础 |
David McAllester, Toyota Technological Institute, Chicago大卫麦卡莱斯特,丰田技术研究所,芝加哥 |
F2020 |
||
67. |
Foundations of Deep Learning 深度学习的基础 |
Soheil Feize, University of Maryland, College ParkSoheil Feize,马里兰州大学帕克分校 |
F2020 |
||
68. |
Deep Learning 深度学习 |
Andreas Geiger, Universität TübingenAndreas Geiger,蒂宾根大学 |
W20/21 |
||
69. |
Deep Learning 深度学习 |
Andreas Maier, FAU Erlangen-NürnbergAndreas Maier,FAU埃尔兰根—纽伦堡 |
W20/21 |
||
70. |
Fundamentals of Deep Learning 深度学习基础 |
Terence Parr and Yannet Interian, University of San FranciscoTerence Parr和Yannet Interian,旧金山大学弗朗西斯科 |
S2021 |
||
71. |
Full Stack Deep Learning 全栈深度学习 |
Pieter Abbeel, Sergey Karayev, UC BerkeleyPieter Abbeel,Sergey Karayev,加州大学伯克利分校 |
S2021 |
||
72. |
Deep Learning: Designing, Visualizing, and Understanding DNNs 深度学习:设计、可视化和理解DNN |
Sergey Levine, UC Berkeley谢尔盖·莱文,加州大学伯克利分校 |
S2021 |
||
73. |
Deep Learning in the Life Sciences 生命科学中的深度学习 |
Manolis Kellis, MITManolis Kellis,麻省理工学院 |
S2021 |
||
74. |
Introduction to Deep Learning and Generative Models 深度学习和生成模型简介 |
Sebastian Raschka, University of Wisconsin-Madison塞巴斯蒂安拉施卡,威斯康星大学麦迪逊分校 |
S2021 |
||
75. |
Deep Learning 深度学习 |
Alfredo Canziani and Yann LeCun, NYUAlfredo Cantici和Yann LeCun,纽约 |
S2021 |
||
76. |
Applied Deep Learning 应用深度学习 |
Alexander Pacha, TU Wien亚历山大帕查,TU维也纳 |
|
2020-2021 |
|
77. |
Machine Learning 机器学习 |
Hung-yi Lee, National Taiwan University国立台湾大学李弘毅 |
S2021 |
||
78. |
Mathematics of Deep Learning 深度学习的数学 |
Lots of legends, FAU很多传奇人物,FAU |
2019-21 |
||
79. |
Deep Learning 深度学习 |
Peter Bloem, Michael Cochez, and Jakub Tomczak, VU-AmsterdamPeter Bloem,Michael Cochez和Jakub Tomczak,阿姆斯特丹 |
2020-21 |
||
80. |
Applied Deep Learning 应用深度学习 |
Maziar Raissi, UC BoulderMaziar Raissi,UC Boulder |
2021 |
||
81. |
An Introduction to Group Equivariant Deep Learning 群等变深度学习简介 |
Erik J. Bekkers, Universiteit van AmsterdamErik J. Bekkers,阿姆斯特丹货车大学 |
2022 |
||
2.Machine Learning Fundamentals#
机器学习基础知识
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course Webpage课程网页 |
Video Lectures视频讲座 |
Year年 |
---|---|---|---|---|---|
1. |
Linear Algebra 线性代数 |
Gilbert Strang, MITGilbert Strang,麻省理工学院 |
2011 |
||
2. |
Probability Primer 概率入门 |
Jeffrey Miller, Brown University杰弗里米勒,布朗大学 |
|
2011 |
|
3. |
Information Theory, Pattern Recognition, and Neural Networks 信息论、模式识别与神经网络 |
David Mackay, University of Cambridge大卫麦凯,剑桥大学 |
2012 |
||
4. |
Linear Algebra Review 线性代数评论 |
Zico Kolter, CMUZico Kolter,CMU |
2013 |
||
5. |
Probability and Statistics 概率统计 |
Michel van Biezen米歇尔·货车·比赞 |
|
2015 |
|
6. |
Linear Algebra: An in-depth Introduction 线性代数:深入介绍 |
Pavel Grinfeld帕维尔·格林菲尔德 |
|
2015- 20172015- 2017年展会 |
|
7. |
Multivariable Calculus 多变量微积分 |
Grant Sanderson, Khan Academy格兰特·桑德森,可汗学院 |
|
2016 |
|
8. |
Essence of Linear Algebra 线性代数的本质 |
Grant Sanderson格兰特·桑德森 |
|
2016 |
|
9. |
Essence of Calculus 微积分的本质 |
Grant Sanderson格兰特·桑德森 |
|
2017-2018 |
|
10. |
Math Background for Machine Learning 机器学习的数学背景 |
Geoff Gordon, CMU杰夫·戈登,CMU |
F2017F2017年 |
||
11. |
Mathematics for Machine Learning (Linear Algebra, Calculus) 机器学习数学(线性代数,微积分) |
David Dye, Samuel Cooper, and Freddie Page, IC-London大卫戴伊,塞缪尔库珀和弗雷迪佩奇,IC-伦敦 |
2018 |
||
12. |
Multivariable Calculus 多变量微积分 |
S.K. Gupta and Sanjeev Kumar, IIT-RoorkeeS.K. Gupta和Sanjeev Kumar,IIT-Roorkee |
2018 |
||
13. |
Engineering Probability 工程概率 |
Rich Radke, Rensselaer Polytechnic InstituteRich Radke,伦斯勒理工学院 |
|
2018 |
|
14. |
Matrix Methods in Data Analysis, Signal Processing, and Machine Learning 数据分析、信号处理和机器学习中的矩阵方法 |
Gilbert Strang, MITGilbert Strang,麻省理工学院 |
S2018 |
||
15. |
Information Theory 信息论 |
Himanshu Tyagi, IISC, BengaluruHimanshu Tyagi,IISC,班加罗尔 |
2018-20 |
||
16. |
Math Camp 数学夏令营 |
Mark Walker, University of ArizonaMark步行者,亚利桑那大学 |
2019 |
||
17. |
A 2020 Vision of Linear Algebra 线性代数的2020愿景 |
Gilbert Strang, MITGilbert Strang,麻省理工学院 |
S2020 |
||
18. |
Mathematics for Numerical Computing and Machine Learning 数值计算与机器学习数学 |
Szymon Rusinkiewicz, Princeton UniversitySzymon Rusinkiewicz,普林斯顿大学 |
F2020 |
||
19. |
Essential Statistics for Neuroscientists 神经科学家基本统计 |
Philipp Berens, Universität Klinikum TübingenPhilipp Berens,蒂宾根大学Klinikum University |
|
2020 |
|
20. |
Mathematics for Machine Learning 机器学习数学 |
Ulrike von Luxburg, Eberhard Karls Universität TübingenUlrike von Luxburg,埃伯哈德卡尔斯蒂宾根大学 |
W2020 |
||
21. |
Introduction to Causal Inference 因果推理导论 |
Brady Neal, Mila, MontréalBrady Neal,Mila,蒙特利尔 |
F2020 |
||
22. |
Applied Linear Algebra 应用线性代数 |
Andrew Thangaraj, IIT MadrasAndrew Thangaraj,IIT Madras |
2021 |
||
23. |
Mathematical Tools for Data Science 数据科学的数学工具 |
Carlos Fernandez-Granda, New York University卡洛斯·费尔南德斯-格兰达,纽约大学 |
2021 |
||
24. |
Mathematics for Numerical Computing and Machine Learning 数值计算与机器学习数学 |
Ryan Adams, Princeton UniversityRyan亚当斯,普林斯顿大学 |
2021 |
||
3.Optimization for Machine Learning#
机器学习的优化
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course Webpage课程网页 |
Video Lectures视频讲座 |
Year年 |
---|---|---|---|---|---|
1. |
Convex Optimization 凸优化 |
Stephen Boyd, Stanford University斯蒂芬·博伊德,斯坦福大学 |
2008 |
||
2. |
Introduction to Optimization 优化导论 |
Michael Zibulevsky, TechnionMichael Zibulevsky,Technion |
2009 |
||
3. |
Optimization for Machine Learning 机器学习的优化 |
S V N Vishwanathan, Purdue UniversityS V N Vishwanathan,普渡大学 |
|
2011 |
|
4. |
Optimization 优化 |
Geoff Gordon & Ryan Tibshirani, CMUGeoff Gordon & Ryan Tibshirani,CMU |
2012 |
||
5. |
Convex Optimization 凸优化 |
Joydeep Dutta, IIT-KanpurJoydeep Dutta,IIT-Kanpur |
2013 |
||
6. |
Foundations of Optimization 优化的基础 |
Joydeep Dutta, IIT-KanpurJoydeep Dutta,IIT-Kanpur |
2014 |
||
7. |
Algorithmic Aspects of Machine Learning 机器学习的数学方面 |
Ankur Moitra, MITAnkur Moitra,麻省理工学院 |
S2015 |
||
8. |
Numerical Optimization 数值优化 |
Shirish K. Shevade, IISCShirish K. Shevade,IISC |
|
2015 |
|
9. |
Convex Optimization 凸优化 |
Ryan Tibshirani, CMURyan Tibshirani,CMU |
S2015 |
||
10. |
Convex Optimization 凸优化 |
Ryan Tibshirani, CMURyan Tibshirani,CMU |
F2015 |
||
11. |
Advanced Algorithms 先进的算法 |
Ankur Moitra, MITAnkur Moitra,麻省理工学院 |
S2016 |
||
12. |
Introduction to Optimization 优化导论 |
Michael Zibulevsky, TechnionMichael Zibulevsky,Technion |
|
2016 |
|
13. |
Convex Optimization 凸优化 |
Javier Peña & Ryan Tibshirani哈维尔·佩尼亚和瑞恩·蒂布希拉尼 |
F2016F2016年 |
||
14. |
Convex Optimization 凸优化 |
Ryan Tibshirani, CMURyan Tibshirani,CMU |
F2018 |
||
15. |
Modern Algorithmic Optimization 现代工艺优化 |
Yurii Nesterov, UCLouvainYurii Nesterov,UCLouvain |
|
2018 |
|
16. |
Optimization, Foundations of Optimization 优化,优化的基础 |
Mark Walker, University of ArizonaMark步行者,亚利桑那大学 |
YouTube-Lectures-Found. YouTube-Lectures-Opt YouTube-讲座-发现。 YouTube-讲座-选择 |
2019 - now2019 -现在 |
|
17. |
Optimization: Principles and Algorithms 优化:原理与算法 |
Michel Bierlaire, École polytechnique fédérale de Lausanne (EPFL)Michel Bierlaire,洛桑联邦理工学院(EPFL) |
2019 |
||
18. |
Optimization and Simulation 优化与仿真 |
Michel Bierlaire, École polytechnique fédérale de Lausanne (EPFL)Michel Bierlaire,洛桑联邦理工学院(EPFL) |
S2019 |
||
19. |
Brazilian Workshop on Continuous Optimization 巴西连续优化研讨会 |
Lots of Legends, Instituto Nacional de Matemática Pura e Aplicada, Rio de JaneiroLots of Legends,巴西国家纯粹与应用数学研究所,里约热内卢 |
2019 |
||
20. |
One World Optimization Seminar One World优化研讨会 |
Lots of Legends, Universität WienLots of Legends,维也纳大学 |
2020- |
||
21. |
Convex Optimization II 凸优化II |
Constantine Caramanis, UT AustinConstantine Caramanis,UT Austin |
S2020 |
||
22. |
Combinatorial Optimization 组合优化 |
Constantine Caramanis, UT AustinConstantine Caramanis,UT Austin |
F2020 |
||
23. |
Optimization Methods for Machine Learning and Engineering 机器学习和工程的优化方法 |
Julius Pfrommer, Jürgen Beyerer, Karlsruher Institut für Technologie (KIT)Julius Pfrommer,Jürgen Beyerer,卡尔斯鲁厄理工学院(KIT) |
W2020-21 |
||
4.General Machine Learning#
通用机器学习
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course Webpage课程网页 |
Video Lectures视频讲座 |
Year年 |
---|---|---|---|---|---|
1. |
CS229: Machine Learning CS229:机器学习 |
Andrew Ng, Stanford University吴恩达,斯坦福大学 |
2007 |
||
2. |
Machine Learning 机器学习 |
Jeffrey Miller, Brown University杰弗里米勒,布朗大学 |
|
2011 |
|
3. |
Machine Learning 机器学习 |
Tom Mitchell, CMU汤姆·米切尔,CMU |
2011 |
||
4. |
Machine Learning and Data Mining 机器学习和数据挖掘 |
Nando de Freitas, University of British ColumbiaNando de Freitas,不列颠哥伦比亚省大学 |
2012 |
||
5. |
Learning from Data 从数据中学习 |
Yaser Abu-Mostafa, CalTechYaser Abu-Mostafa,加州理工学院 |
2012 |
||
6. |
Machine Learning 机器学习 |
Rudolph Triebel, Technische Universität MünchenRudolph Triebel,慕尼黑工业大学 |
2013 |
||
7. |
Introduction to Machine Learning 介绍机器学习 |
Alex Smola, CMUAlex Smola,CMU |
2013 |
||
8. |
Introduction to Machine Learning 介绍机器学习 |
Alex Smola and Geoffrey Gordon, CMUAlex Smola和Geoffrey Gordon,CMU |
2013 |
||
9. |
Pattern Recognition 模式识别 |
Sukhendu Das, IIT-M and C.A. Murthy, ISI-CalcuttaSukhendu Das,IIT-M和C.A.穆尔蒂 |
2014 |
||
10. |
An Introduction to Statistical Learning with Applications in R 统计学习导论及其在R语言中的应用 |
Trevor Hastie and Robert Tibshirani, StanfordTrevor Hastie和罗伯特Tibshirani,斯坦福大学 |
2014 |
||
11. |
Introduction to Machine Learning 介绍机器学习 |
Katie Malone, Sebastian Thrun, UdacityKatie马龙、塞巴斯蒂安特龙、Udacity |
2015 |
||
12. |
Introduction to Machine Learning 介绍机器学习 |
Dhruv Batra, Virginia TechDhruv Batra,弗吉尼亚理工大学 |
2015 |
||
13. |
Statistical Learning - Classification 统计学习-分类 |
Ali Ghodsi, University of WaterlooAli Ghodsi,滑铁卢大学 |
2015 |
||
14. |
Machine Learning Theory 机器学习理论 |
Shai Ben-David, University of WaterlooShai Ben-David,滑铁卢大学 |
|
2015 |
|
15. |
Introduction to Machine Learning 介绍机器学习 |
Alex Smola, CMUAlex Smola,CMU |
S2015 |
||
16. |
Statistical Machine Learning 统计机器学习 |
Larry Wasserman, CMULarry Wasserman,CMU |
|
S2015 |
|
17. |
ML: Supervised Learning ML:监督学习 |
Michael Littman, Charles Isbell, Pushkar Kolhe, GaTechMichael Littman,Charles Isbell,Pushkar Kolhe,GaTech公司 |
2015 |
||
18. |
ML: Unsupervised Learning ML:无监督学习 |
Michael Littman, Charles Isbell, Pushkar Kolhe, GaTechMichael Littman,Charles Isbell,Pushkar Kolhe,GaTech公司 |
2015 |
||
19. |
Advanced Introduction to Machine Learning 机器学习高级介绍 |
Barnabas Poczos and Alex SmolaBarnabas Poczos和Alex Smola |
F2015 |
||
20. |
Machine Learning 机器学习 |
Pedro Domingos, UWashington佩德罗·多明戈斯,华盛顿大学 |
S2016 |
||
21. |
Statistical Machine Learning 统计机器学习 |
Larry Wasserman, CMULarry Wasserman,CMU |
|
S2016 |
|
22. |
Machine Learning with Large Datasets 大数据集的机器学习 |
William Cohen, CMU威廉·科恩,CMU |
F2016F2016年 |
||
23. |
Math Background for Machine Learning 机器学习的数学背景 |
Geoffrey Gordon, CMU杰弗里·戈登,CMU |
|
F2016F2016年 |
|
24. |
Statistical Learning - Classification 统计学习-分类 |
Ali Ghodsi, University of WaterlooAli Ghodsi,滑铁卢大学 |
|
2017 |
|
25. |
Machine Learning 机器学习 |
Andrew Ng, Stanford University吴恩达,斯坦福大学 |
2017 |
||
26. |
Machine Learning 机器学习 |
Roni Rosenfield, CMURoni Rosenfield,CMU |
2017 |
||
27. |
Statistical Machine Learning 统计机器学习 |
Ryan Tibshirani, Larry Wasserman, CMURyan Tibshirani,Larry Wasserman,CMU |
S2017 |
||
28. |
Machine Learning for Computer Vision 机器学习与计算机视觉 |
Fred Hamprecht, Heidelberg University弗雷德·汉普雷希特,海德堡大学 |
|
F2017F2017年 |
|
29. |
Math Background for Machine Learning 机器学习的数学背景 |
Geoffrey Gordon, CMU杰弗里·戈登,CMU |
F2017F2017年 |
||
30. |
Data Visualization 数据可视化 |
Ali Ghodsi, University of WaterlooAli Ghodsi,滑铁卢大学 |
|
2017 |
|
31. |
Machine Learning for Physicists 物理学家的机器学习 |
Florian Marquardt, Uni Erlangen-NürnbergFlorian Marquardt,Uni Erlangen—Nürnberg,德国 |
2017 |
||
32. |
Machine Learning for Intelligent Systems 智能系统的机器学习 |
Kilian Weinberger, Cornell UniversityKilian Weinberger,康奈尔大学 |
F2018 |
||
33. |
Statistical Learning Theory and Applications 统计学习理论与应用 |
Tomaso Poggio, Lorenzo Rosasco, Sasha RakhlinTomaso Poggio洛伦佐罗斯科Sasha Rakhlin |
F2018 |
||
34. |
Machine Learning and Data Mining 机器学习和数据挖掘 |
Mike Gelbart, University of British ColumbiaMike Gelbart,不列颠哥伦比亚省大学 |
2018 |
||
35. |
Foundations of Machine Learning 机器学习的基础 |
David Rosenberg, Bloomberg大卫罗森伯格,彭博社 |
2018 |
||
36. |
Introduction to Machine Learning 介绍机器学习 |
Andreas Krause, ETH ZürichAndreas Krause,ETH Zurich |
2018 |
||
37. |
Machine Learning Fundamentals 机器学习基础知识 |
Sanjoy Dasgupta, UC-San DiegoSanjoy Dasgupta,加州大学圣地亚哥分校 |
2018 |
||
38. |
Machine Learning 机器学习 |
Jordan Boyd-Graber, University of Maryland乔丹·博伊特-格雷伯,马里兰州大学 |
2015-2018 |
||
39. |
Machine Learning 机器学习 |
Andrew Ng, Stanford University吴恩达,斯坦福大学 |
2018 |
||
40. |
Machine Intelligence 机器智能 |
H.R.Tizhoosh, UWaterlooH.R.Tizhoosh,滑铁卢大学 |
2019 |
||
41. |
Introduction to Machine Learning 介绍机器学习 |
Pascal Poupart, University of WaterlooPascal Poupart,滑铁卢大学 |
S2019 |
||
42. |
Advanced Machine Learning 先进的机器学习 |
Thorsten Joachims, Cornell UniversityThorsten Joachims,康奈尔大学 |
S2019 |
||
43. |
Machine Learning for Structured Data 结构化数据的机器学习 |
Matt Gormley, Carnegie Mellon UniversityMatt Gormley,卡内基梅隆大学 |
F2019 |
||
44. |
Advanced Machine Learning 先进的机器学习 |
Joachim Buhmann, ETH ZürichJoachim Buhmann,苏黎世ETH |
F2019 |
||
45. |
Machine Learning for Signal Processing 信号处理的机器学习 |
Vipul Arora, IIT-KanpurVipul Arora,IIT-Kanpur |
F2019 |
||
46. |
Foundations of Machine Learning 机器学习的基础 |
Animashree Anandkumar, CalTechAnimashree Anandkumar,加州理工学院 |
2019 |
||
47. |
Machine Learning for Physicists 物理学家的机器学习 |
Florian Marquardt, Uni Erlangen-NürnbergFlorian Marquardt,Uni Erlangen—Nürnberg,德国 |
|
2019 |
|
48. |
Applied Machine Learning 应用机器学习 |
Andreas Müller, Columbia UniversityAndreas Müller,哥伦比亚大学 |
2019 |
||
49. |
Fundamentals of Machine Learning over Networks 网络机器学习基础 |
Hossein Shokri-Ghadikolaei, KTH, SwedenHossein Shokri—Ghadikolaei,KTH,瑞典 |
2019 |
||
50. |
Foundations of Machine Learning and Statistical Inference 机器学习与统计推断基础 |
Animashree Anandkumar, CalTechAnimashree Anandkumar,加州理工学院 |
2020 |
||
51. |
Machine Learning 机器学习 |
Rebecca Willett and Yuxin Chen, University of ChicagoRebecca Willett和Yuxin Chen,芝加哥大学 |
S2020 |
||
52. |
Introduction to Machine Learning 介绍机器学习 |
Sanjay Lall and Stephen Boyd, Stanford UniversitySanjay Lall和Stephen Boyd,斯坦福大学 |
S2020 |
||
53. |
Applied Machine Learning 应用机器学习 |
Andreas Müller, Columbia UniversityAndreas Müller,哥伦比亚大学 |
S2020 |
||
54. |
Statistical Machine Learning 统计机器学习 |
Ulrike von Luxburg, Eberhard Karls Universität TübingenUlrike von Luxburg,埃伯哈德卡尔斯蒂宾根大学 |
SS2020 |
||
55. |
Probabilistic Machine Learning 概率机器学习 |
Philipp Hennig, Eberhard Karls Universität TübingenPhilipp Hennig,蒂宾根大学Eberhard Karls |
SS2020 |
||
56. |
Machine Learning 机器学习 |
Sarath Chandar, PolyMTL, UdeM, MilaSarath Mesar,PolyMTL,UdeM,米拉 |
F2020 |
||
57. |
Machine Learning 机器学习 |
Erik Bekkers, Universiteit van AmsterdamErik Bekkers,阿姆斯特丹大学 |
F2020 |
||
58. |
Neural Networks for Signal Processing 神经网络信号处理 |
Shayan Srinivasa Garani, Indian Institute of ScienceShayan Srinivasa Garani,印度科学研究所 |
F2020 |
||
59. |
Introduction to Machine Learning 介绍机器学习 |
Dmitry Kobak, Universität Klinikum TübingenDmitry Kobak,蒂宾根大学Klinikum |
|
2020 |
|
60. |
Machine Learning (PRML) 机器学习(PRML) |
Erik J. Bekkers, Universiteit van AmsterdamErik J. Bekkers,阿姆斯特丹货车大学 |
2020 |
||
61. |
Machine Learning with Kernel Methods 机器学习与核方法 |
Julien Mairal and Jean-Philippe Vert, Inria/ENS Paris-Saclay, GoogleJulien Mairal和Jean-Philippe Vert,Inria/ENS Paris-Saclay,Google |
S2021 |
||
62. |
Continual Learning 不断学习 |
Vincenzo Lomonaco, Università di PisaVincenzo Lomonaco,比萨大学意大利 |
2021 |
||
63. |
Causality 因果关系 |
Christina Heinze-Deml, ETH ZurichChristina Heinze—Deml,ETH Zurich |
2021 |
||
5.Reinforcement Learning#
强化学习
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course Webpage课程网页 |
Video Lectures视频讲座 |
Year年 |
---|---|---|---|---|---|
1. |
A Short Course on Reinforcement Learning 强化学习短期课程 |
Satinder Singh, UMichiganSatinder Singh,UMichigan |
|
2011 |
|
2. |
Approximate Dynamic Programming 近似动态规划 |
Dimitri P. Bertsekas, MITDimitri P. Bertsekas,麻省理工学院 |
2014 |
||
3. |
Introduction to Reinforcement Learning 强化学习简介 |
David Silver, DeepMind大卫银,DeepMind |
2015 |
||
4. |
Reinforcement Learning 强化学习 |
Charles Isbell, Chris Pryby, GaTech; Michael Littman, BrownCharles Isbell,Chris Pryby,GaTech; Michael Littman,Brown |
2015 |
||
5. |
Reinforcement Learning 强化学习 |
Balaraman Ravindran, IIT MadrasBalaraman Ravindran,IIT Madras |
[RL-IITM](https://www.cse.iitm.ac.in/~ravi/courses/Reinforcement Learning.html) |
2016 |
|
6. |
Deep Reinforcement Learning 深度强化学习 |
Sergey Levine, UC Berkeley谢尔盖·莱文,加州大学伯克利分校 |
S2017 |
||
7. |
Deep Reinforcement Learning 深度强化学习 |
Sergey Levine, UC Berkeley谢尔盖·莱文,加州大学伯克利分校 |
F2017F2017年 |
||
8. |
Deep RL Bootcamp 深度RL训练营 |
Many legends, UC Berkeley加州大学伯克利分校的许多传奇人物 |
2017 |
||
9 |
Data Efficient Reinforcement Learning 数据高效强化学习 |
Lots of Legends, Canary Islands很多传说,加那利群岛 |
2017 |
||
10. |
Deep Reinforcement Learning 深度强化学习 |
Sergey Levine, UC Berkeley谢尔盖·莱文,加州大学伯克利分校 |
2018 |
||
11. |
Reinforcement Learning 强化学习 |
Pascal Poupart, University of WaterlooPascal Poupart,滑铁卢大学 |
2018 |
||
12. |
Deep Reinforcement Learning and Control 深度强化学习与控制 |
Katerina Fragkiadaki and Tom Mitchell, CMUKaterina Fragkiadaki和Tom Mitchell,CMU |
2018 |
||
13. |
Reinforcement Learning and Optimal Control 强化学习与最优控制 |
Dimitri Bertsekas, Arizona State University亚利桑那州立大学州立大学 |
2019 |
||
14. |
Reinforcement Learning 强化学习 |
Emma Brunskill, Stanford UniversityEmma Brunskill,斯坦福大学 |
2019 |
||
15. |
Reinforcement Learning Day 强化学习日 |
Lots of Legends, Microsoft Research, New York很多传奇,微软研究院,纽约 |
2019 |
||
16. |
New Directions in Reinforcement Learning and Control 强化学习与控制的新方向 |
Lots of Legends, IAS, Princeton UniversityLots of Legends,IAS,普林斯顿大学 |
2019 |
||
17. |
Deep Reinforcement Learning 深度强化学习 |
Sergey Levine, UC Berkeley谢尔盖·莱文,加州大学伯克利分校 |
F2019 |
||
18. |
Deep Multi-Task and Meta Learning 深度多任务和Meta学习 |
Chelsea Finn, Stanford University切尔西·芬恩,斯坦福大学 |
F2019 |
||
19. |
RL-Theory Seminars RL理论研讨会 |
Lots of Legends, Earth很多传说,地球 |
2020 -2020年- |
||
20. |
Deep Reinforcement Learning 深度强化学习 |
Sergey Levine, UC Berkeley谢尔盖·莱文,加州大学伯克利分校 |
F2020 |
||
21. |
Introduction to Reinforcement Learning 强化学习简介 |
Amir-massoud Farahmand, Vector Institute, University of TorontoAmir-massoud Farahmand,多伦多大学矢量研究所 |
S2021 |
||
22. |
Reinforcement Learning 强化学习 |
Antonio Celani and Emanuele Panizon, International Centre for Theoretical PhysicsAntonio Celani和Emanuele Panizon,国际理论物理中心 |
|
2021 |
|
23. |
Computational Sensorimotor Learning 计算感觉运动学习 |
Pulkit Agrawal, MIT-CSAILPulkit Agrawal,MIT-CSAIL |
S2021 |
||
24. |
Reinforcement Learning 强化学习 |
Dimitri P. Bertsekas, ASU/MITDimitri P. Bertsekas,亚利桑那州立大学/麻省理工学院 |
S2021 |
||
25. |
Reinforcement Learning 强化学习 |
Sarath Chandar, École Polytechnique de MontréalSarath Chandar,蒙特利尔理工学院 |
F2021 |
||
26. |
Deep Reinforcement Learning 深度强化学习 |
Sergey Levine, UC Berkeley谢尔盖·莱文,加州大学伯克利分校 |
F2021 |
||
27. |
Reinforcement Learning Lecture Series 强化学习系列讲座 |
Lots of Legends, DeepMind & UC LondonLots of Legends,DeepMind & UC伦敦 |
2021 |
||
28. |
Reinforcement Learning 强化学习 |
Dimitri P. Bertsekas, ASU/MITDimitri P. Bertsekas,亚利桑那州立大学/麻省理工学院 |
S2022 |
||
6.Probabilistic Graphical Models#
概率图模型
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Probabilistic Graphical Models 概率图模型 |
Many Legends, MPI-ISMany Legends,MPI-IS |
2013 |
||
2. |
Probabilistic Modeling and Machine Learning 概率建模与机器学习 |
Zoubin Ghahramani, University of CambridgeZoubin Ghahramani,剑桥大学 |
2013 |
||
3. |
Probabilistic Graphical Models 概率图模型 |
Eric Xing, CMUEric Xing,CMU |
2014 |
||
4. |
Learning with Structured Data: An Introduction to Probabilistic Graphical Models 用结构化数据学习:概率图模型介绍 |
Christoph Lampert, IST AustriaChristoph Lampert,IST奥地利 |
|
2016 |
|
5. |
Probabilistic Graphical Models 概率图模型 |
Nicholas Zabaras, University of Notre DameNicholas Zabaras,圣母大学 |
2018 |
||
6. |
Probabilistic Graphical Models 概率图模型 |
Eric Xing, CMUEric Xing,CMU |
S2019 |
||
7. |
Probabilistic Graphical Models 概率图模型 |
Eric Xing, CMUEric Xing,CMU |
S2020 |
||
8. |
Uncertainty Modeling in AI AI中的不确定性建模 |
Gim Hee Lee, National University of Singapura (NUS)Gim Hee Lee,新加坡国立大学(NUS) |
2020-21 |
||
7.Bayesian Deep Learning#
贝叶斯深度学习
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Bayesian Neural Networks, Variational Inference 贝叶斯神经网络,变分推理 |
Lots of Legends很多传奇 |
|
2014-now2014年至今 |
|
2. |
Variational Inference 变分推理 |
Chieh Wu, Northeastern UniversityChieh Wu,东北大学 |
|
2015 |
|
3. |
Deep Learning and Bayesian Methods 深度学习和贝叶斯方法 |
Lots of Legends, HSE Moscow很多传奇,HSE莫斯科 |
2018 |
||
4. |
Deep Learning and Bayesian Methods 深度学习和贝叶斯方法 |
Lots of Legends, HSE Moscow很多传奇,HSE莫斯科 |
2019 |
||
5. |
Nordic Probabilistic AI 北欧概率AI |
Lots of Legends, NTNU, Trondheim很多传说,NTNU,特隆赫姆 |
2019 |
||
8.Medical Imaging#
医学成像
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Medical Imaging Summer School 医学影像暑期学校 |
Lots of Legends, Sicily很多传说,西西里 |
2014 |
||
2. |
Biomedical Image Analysis Summer School 生物医学图像分析暑期学校 |
Lots of Legends, Paris很多传奇,巴黎 |
|
2015 |
|
3. |
Medical Imaging Summer School 医学影像暑期学校 |
Lots of Legends, Sicily很多传说,西西里 |
2016 |
||
4. |
OPtical and UltraSound imaging - OPUS 光学和超声成像- OPUS |
Lots of Legends, Université de Lyon, France法国里昂大学传奇地段 |
2016 |
||
5. |
Medical Imaging Summer School 医学影像暑期学校 |
Lots of Legends, Sicily很多传说,西西里 |
2018 |
||
6. |
Seminar on AI in Healthcare 医疗保健领域的AI研讨会 |
Lots of Legends, Stanford很多传奇人物,斯坦福大学 |
2018 |
||
7. |
Machine Learning for Healthcare 医疗保健机器学习 |
David Sontag, Peter Szolovits, CSAIL MIT大卫桑塔格,彼得Szolovits,CSAIL麻省理工学院 |
S2019 |
||
8. |
Deep Learning and Medical Applications 深度学习与医疗应用 |
Lots of Legends, IPAM, UCLA很多传奇,IPAM,UCLA |
2020 |
||
9. |
Stanford Symposium on Artificial Intelligence in Medicine and Imaging 斯坦福大学医学和成像人工智能研讨会 |
Lots of Legends, Stanford AIMI传奇无数,斯坦福大学爱美 |
2020 |
||
9.Graph Neural Networks (Geometric DL)#
图形神经网络(几何DL)
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Deep learning on graphs and manifolds 图和流形上的深度学习 |
Michael Bronstein, Technion迈克尔·布朗斯坦,以色列理工学院 |
|
2017 |
|
2. |
Geometric Deep Learning on Graphs and Manifolds 图和流形上的几何深度学习 |
Michael Bronstein, Technische Universität MünchenMichael Bronstein,慕尼黑技术大学 |
|
2017 |
|
3. |
Eurographics Symposium on Geometry Processing - Graduate School 欧洲图形学研讨会几何处理-研究生院 |
Lots of Legends, SIGGRAPH, LondonLOTS OF LEGENDS,SIGGRAPH,伦敦 |
2017 |
||
4. |
Eurographics Symposium on Geometry Processing - Graduate School 欧洲图形学研讨会几何处理-研究生院 |
Lots of Legends, SIGGRAPH, ParisLOTS OF LEGENDS,SIGGRAPH,巴黎 |
2018 |
||
5. |
Analysis of Networks: Mining and Learning with Graphs 网络分析:用图进行挖掘和学习 |
Jure Leskovec, Stanford UniversityJure Leskovec,斯坦福大学 |
2018 |
||
6. |
Machine Learning with Graphs 图的机器学习 |
Jure Leskovec, Stanford UniversityJure Leskovec,斯坦福大学 |
2019 |
||
7. |
Geometry and Learning from Data in 3D and Beyond -Geometry and Learning from Data Tutorials 几何和学习从数据在3D和超越-几何和学习从数据教程 |
Lots of Legends, IPAM UCLA很多传奇,IPAM UCLA |
2019 |
||
8. |
Geometry and Learning from Data in 3D and Beyond - Geometric Processing 几何和从3D及以上数据中学习-几何处理 |
Lots of Legends, IPAM UCLA很多传奇,IPAM UCLA |
2019 |
||
9. |
Geometry and Learning from Data in 3D and Beyond - Shape Analysis 3D和超形状分析中的几何和数据学习 |
Lots of Legends, IPAM UCLA很多传奇,IPAM UCLA |
2019 |
||
10. |
Geometry and Learning from Data in 3D and Beyond - Geometry of Big Data 几何学和从3D及更远的数据中学习-大数据的几何学 |
Lots of Legends, IPAM UCLA很多传奇,IPAM UCLA |
2019 |
||
11. |
Geometry and Learning from Data in 3D and Beyond - Deep Geometric Learning of Big Data and Applications 几何和从3D及以上的数据中学习-大数据的深度几何学习和应用 |
Lots of Legends, IPAM UCLA很多传奇,IPAM UCLA |
2019 |
||
12. |
Israeli Geometric Deep Learning 以色列几何深度学习 |
Lots of Legends, Israel以色列的许多传说 |
2020 |
||
13. |
Machine Learning for Graphs and Sequential Data 图和序列数据的机器学习 |
Stephan Günnemann, Technische Universität München (TUM)Stephan Günnemann,慕尼黑工业大学(TUM) |
S2020 |
||
14. |
Machine Learning with Graphs 图的机器学习 |
Jure Leskovec, StanfordJure Leskovec,斯坦福大学 |
W2021公司简介 |
||
15. |
Geometric Deep Learning - AMMI 几何深度学习- AMMI |
Lots of Legends, Virtual很多传奇,虚拟 |
2021 |
||
16. |
Summer School on Geometric Deep Learning - 几何深度学习暑期班- |
Lots of Legends, DTU, DIKU & AAU大量的传奇,DTU,DIKU和AAU |
2021 |
||
17. |
Graph Neural Networks 图神经网络 |
Alejandro Ribeiro, University of PennsylvaniaAlejandro Ribeiro,宾夕法尼亚大学 |
F2021 |
||
10.Natural Language Processing#
自然语言处理
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Computational Linguistics I 计算语言学I |
Jordan Boyd-Graber, University of Maryland乔丹·博伊特-格雷伯,马里兰州大学 |
2013-2018 |
||
2. |
Deep Learning for Natural Language Processing 深度学习用于自然语言处理 |
Nils Reimers, TU DarmstadtNils Reimers,达姆施塔特工业大学 |
2015-2017 |
||
3. |
Deep Learning for Natural Language Processing 深度学习用于自然语言处理 |
Many Legends, DeepMind-Oxford许多传奇,DeepMind-Oxford |
2017 |
||
4. |
Deep Learning for Speech & Language 语音语言的深度学习 |
UPC BarcelonaUPC巴塞罗那 |
2017 |
||
5. |
Neural Networks for Natural Language Processing 自然语言处理的神经网络 |
Graham Neubig, CMUGraham Neubig,CMU |
2017 |
||
6. |
Neural Networks for Natural Language Processing 自然语言处理的神经网络 |
Graham Neubig, CMUGraham Neubig,CMU |
2018 |
||
7. |
Deep Learning for NLP 深度学习NLP |
Min-Yen Kan, NUSMin-Yen Kan,新加坡国立大学 |
2018 |
||
8. |
Neural Networks for Natural Language Processing 自然语言处理的神经网络 |
Graham Neubig, CMUGraham Neubig,CMU |
2019 |
||
9. |
Natural Language Processing with Deep Learning 自然语言处理与深度学习 |
Abigail See, Chris Manning, Richard Socher, Stanford UniversityAbigail See,Chris Manning,Richard Socher,斯坦福大学 |
2019 |
||
10. |
Natural Language Understanding 自然语言理解 |
Bill MacCartney and Christopher Potts比尔·麦卡特尼和克里斯托弗·波茨 |
S2019 |
||
11. |
Neural Networks for Natural Language Processing 自然语言处理的神经网络 |
Graham Neubig, Carnegie Mellon UniversityGraham Neubig,卡内基梅隆大学 |
S2020 |
||
12. |
Advanced Natural Language Processing 高级自然语言处理 |
Mohit Iyyer, UMass AmherstMohit Iyyer,马萨诸塞大学阿默斯特分校 |
F2020 |
||
13. |
Machine Translation 机器翻译 |
Philipp Koehn, Johns Hopkins University约翰霍普金斯大学Philipp Koehn |
F2020 |
||
14. |
Neural Networks for NLP NLP的神经网络 |
Graham Neubig, Carnegie Mellon UniversityGraham Neubig,卡内基梅隆大学 |
2021 |
||
15. |
Deep Learning for Natural Language Processing 深度学习用于自然语言处理 |
Kyunghyun Cho, New York University赵京铉,纽约大学 |
F2021 |
||
16. |
Natural Language Processing with Deep Learning 自然语言处理与深度学习 |
Chris Manning, Stanford University克里斯·曼宁,斯坦福大学 |
2021 |
||
11.Automatic Speech Recognition#
自动语音识别
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Deep Learning for Speech & Language 语音语言的深度学习 |
UPC BarcelonaUPC巴塞罗那 |
Lecture-Videos YouTube-Videos 讲座视频 YouTube视频 |
2017 |
|
2. |
Speech and Audio in the Northeast 东北地区的语音和音频 |
Many Legends, Google NYC许多传奇,谷歌纽约 |
2015 |
||
3. |
Automatic Speech Recognition 自动语音识别 |
Samudra Vijaya K, TIFRSamudra Vijaya K,TIFR |
|
2016 |
|
4. |
Speech and Audio in the Northeast 东北地区的语音和音频 |
Many Legends, Google NYC许多传奇,谷歌纽约 |
2017 |
||
5. |
Speech and Audio in the Northeast 东北地区的语音和音频 |
Many Legends, Google Cambridge多个传奇,谷歌剑桥 |
2018 |
||
-1. |
Deep Learning for Speech Recognition 深度学习语音识别 |
Many Legends, AoE许多传说,AoE |
|
2015-2018 |
12.Modern Computer Vision#
现代计算机视觉
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Microsoft Computer Vision Summer School - (classical) 微软计算机视觉暑期学校-(古典) |
Lots of Legends, Lomonosov Moscow State UniversityLomonosov莫斯科州立大学 |
|
2011 |
|
2. |
Computer Vision - (classical) 计算机视觉(经典) |
Mubarak Shah, UCFMubarak Shah,UCF |
2012 |
||
3. |
Image and Multidimensional Signal Processing - (classical) 图像和多维信号处理(经典) |
William Hoff, Colorado School of Mines威廉霍夫,科罗拉多矿业学院 |
2012 |
||
4. |
Computer Vision - (classical) 计算机视觉(Classical) |
William Hoff, Colorado School of Mines威廉霍夫,科罗拉多矿业学院 |
2012 |
||
5. |
Image and Video Processing: From Mars to Hollywood with a Stop at the Hospital 图像和视频处理:从火星到好莱坞,在医院停留 |
Guillermo Sapiro, Duke UniversityGuillermo Sapiro,杜克大学 |
|
2013 |
|
6. |
Multiple View Geometry (classical) 多视图几何图形(经典) |
Daniel Cremers, Technische Universität MünchenDaniel Cremers,慕尼黑技术大学 |
2013 |
||
7. |
Mathematical Methods for Robotics, Vision, and Graphics 机器人、视觉和图形学的数学方法 |
Justin Solomon, Stanford University贾斯汀所罗门,斯坦福大学 |
2013 |
||
8. |
Computer Vision - (classical) 计算机视觉(Classical) |
Mubarak Shah, UCFMubarak Shah,UCF |
2014 |
||
9. |
Computer Vision for Visual Effects (classical) Computer Vision for Visual Effects(英语:Computer Vision for Visual Effects) |
Rich Radke, Rensselaer Polytechnic InstituteRich Radke,伦斯勒理工学院 |
S2014 |
||
10. |
Autonomous Navigation for Flying Robots 飞行机器人的自主导航 |
Juergen Sturm, Technische Universität MünchenJuergen Sturm,慕尼黑工业大学 |
2014 |
||
11. |
SLAM - Mobile Robotics SLAM -移动的机器人 |
Cyrill Stachniss, Universitaet FreiburgCyrill Stachniss,弗赖堡大学 |
2014 |
||
12. |
Computational Photography 计算摄影 |
Irfan Essa, David Joyner, Arpan ChakrabortyIrfan Essa,大卫乔伊纳,Arpan Chakraborty |
2015 |
||
13. |
Introduction to Digital Image Processing 数字图像处理导论 |
Rich Radke, Rensselaer Polytechnic InstituteRich Radke,伦斯勒理工学院 |
S2015 |
||
14. |
Lectures on Digital Photography 数码摄影讲座 |
Marc Levoy, Stanford/Google ResearchMarc Levoy,斯坦福大学/谷歌研究 |
2016 |
||
15. |
Introduction to Computer Vision (foundation) 计算机视觉导论(基础) |
Aaron Bobick, Irfan Essa, Arpan ChakrabortyAaron Bobick,Irfan Essa,Arpan Chakraborty |
2016 |
||
16. |
Computer Vision 计算机视觉 |
Syed Afaq Ali Shah, University of Western AustraliaSyed Afaq Ali Shah,西澳大利亚大学 |
|
2016 |
|
17. |
Photogrammetry I & II 摄影测量I II |
Cyrill Stachniss, University of BonnCyrill Stachniss,波恩大学 |
2016 |
||
18. |
Deep Learning for Computer Vision |
UPC BarcelonaUPC巴塞罗那 |
2016-2018 |
||
19. |
Convolutional Neural Networks 卷积神经网络 |
Andrew Ng, Stanford University吴恩达,斯坦福大学 |
2017 |
||
20. |
Variational Methods for Computer Vision 计算机视觉的变分方法 |
Daniel Cremers, Technische Universität MünchenDaniel Cremers,慕尼黑技术大学 |
2017 |
||
21. |
Winter School on Computer Vision 计算机视觉冬季学校 |
Lots of Legends, Israel Institute for Advanced Studies以色列高等研究院(Israel Institute for Advanced Studies) |
2017 |
||
22. |
Deep Learning for Visual Computing 视觉计算的深度学习 |
Debdoot Sheet, IIT-KgpDebdoot Sheet,IIT-Kgp |
2018 |
||
23. |
The Ancient Secrets of Computer Vision 计算机视觉的古老秘密 |
Joseph Redmon, Ali Farhadi约瑟夫雷德蒙、阿里·法哈迪 |
2018 |
||
24. |
Modern Robotics 现代机器人 |
Kevin Lynch, Northwestern Robotics凯文·林奇,西北机器人公司 |
2018 |
||
25. |
Digial Image Processing 数字图像处理 |
Alex Bronstein, TechnionAlex Bronstein,Technion |
2018 |
||
26. |
Mathematics of Imaging - Variational Methods and Optimization in Imaging 成像数学-变分法与成像优化 |
Lots of Legends, Institut Henri Poincaré亨利·庞加莱研究所(Institut Henri Poincaré) |
2019 |
||
27. |
Deep Learning for Video 深度学习视频 |
Xavier Giró, UPC BarcelonaXavier Giró,UPC巴塞罗那 |
2019 |
||
28. |
Statistical modeling for shapes and imaging 形状和成像的统计建模 |
Lots of Legends, Institut Henri Poincaré, Paris《传奇》,亨利·庞加莱学院,巴黎 |
2019 |
||
29. |
Imaging and machine learning 成像和机器学习 |
Lots of Legends, Institut Henri Poincaré, Paris《传奇》,亨利·庞加莱学院,巴黎 |
2019 |
||
30. |
Computer Vision 计算机视觉 |
Jayanta Mukhopadhyay, IIT KgpJayanta Mukhopadhyay,IIT Kgp |
2019 |
||
31. |
Deep Learning for Computer Vision |
Justin Johnson, UMichigan贾斯汀约翰逊,UMichigan |
2019 |
||
32. |
Sensors and State Estimation 2 传感器和状态估计2 |
Cyrill Stachniss, University of BonnCyrill Stachniss,波恩大学 |
|
S2020 |
|
33. |
Computer Vision III: Detection, Segmentation and Tracking 计算机视觉III:检测、分割和跟踪 |
Laura Leal-Taixé, TU MünchenLaura Leal—Taixé,TU慕尼黑 |
S2020 |
||
34. |
Advanced Deep Learning for Computer Vision 用于计算机视觉的高级深度学习 |
Laura Leal-Taixé and Matthias Nießner, TU MünchenLaura Leal—Taixé和Matthias Niessner,慕尼黑工业大学 |
S2020 |
||
35. |
Computer Vision: Foundations 计算机视觉:基础 |
Fred Hamprecht, Universität HeidelbergFred Hamprecht,海德堡大学 |
SS2020 |
||
36. |
MIT Vision Seminar 麻省理工学院愿景研讨会 |
Lots of Legends, MIT很多传奇,MIT |
2015-now2015年至今 |
||
37. |
TUM AI Guest Lectures TUM AI客座讲座 |
Lots of Legends, Technische Universität MünchenLots of Legends,慕尼黑技术大学 |
2020 - now2020 -现在 |
||
38. |
Seminar on 3D Geometry & Vision 3D几何视觉研讨会 |
Lots of Legends, Virtual很多传奇,虚拟 |
2020 - now2020 -现在 |
||
39. |
Event-based Robot Vision 基于事件的机器视觉 |
Guillermo Gallego, Technische Universität BerlinGuillermo Gallego,柏林工业大学 |
2020 - now2020 -现在 |
||
40. |
Deep Learning for Computer Vision |
Vineeth Balasubramanian, IIT HyderabadVineeth Balasubramanian,IIT海得拉巴 |
2020 |
||
41. |
Deep Learning for Visual Computing 视觉计算的深度学习 |
Peter Wonka, KAUST, SAPeter Wonka,KAUST,SA(德国) |
|
2020 |
|
42. |
Computer Vision 计算机视觉 |
Yogesh Rawat, University of Central FloridaYogesh Rawat,中佛罗里达大学 |
F2020 |
||
43. |
Multimedia Signal Processing 多媒体信号处理 |
Mark Hasegawa-Johnson, UIUCMark Hasegawa-Johnson,UIUC |
[Lecture Videos](https://mediaspace.illinois.edu/channel/ECE 417/26816181) [讲座视频](https://mediaspace.illinois.edu/channel/ECE 417/26816181) |
F2020 |
|
44. |
Computer Vision 计算机视觉 |
Andreas Geiger, Universität TübingenAndreas Geiger,蒂宾根大学 |
S2021 |
||
45. |
3D Computer Vision 3D计算机视觉 |
Lee Gim Hee, National Univeristy of SingapuraLee Gim Hee,新加坡国立大学 |
|
2021 |
|
46. |
Deep Learning for Computer Vision: Fundamentals and Applications 计算机视觉深度学习:基础与应用 |
T. Dekel et al., Weizmann Institute of ScienceT. Dekel等人,魏兹曼科学研究所 |
S2021 |
||
47. |
Current Topics in ML Methods in 3D and Geometric Deep Learning 3D和几何深度学习中的ML方法 |
Animesh Garg & others, University of TorontoAnimesh Garg & others,多伦多大学 |
2021 |
||
48. |
First Principles of Computer Vision 计算机视觉的基本原理 |
Shree K. Nayar, Columbia UniversityShree K.纳亚尔,哥伦比亚大学 |
2021 |
||
49. |
Self-Driving Cars 自动驾驶汽车 |
Andreas Geiger, Universität TübingenAndreas Geiger,蒂宾根大学 |
W2021公司简介 |
||
Go to Contents 转到目录
Boot Camps or Summer Schools 靴子营或暑期学校
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Deep Learning, Feature Learning 深度学习,特征学习 |
Lots of Legends, IPAM UCLA很多传奇,IPAM UCLA |
2012 |
||
2. |
Big Data Boot Camp 大数据靴子营 |
Lots of Legends, Simons InstituteSimons Institute的许多传奇 |
2013 |
||
3. |
Machine Learning Summer School 机器学习暑期学校 |
Lots of Legends, MPI-IS TübingenLOTS OF LEGEND,MPI—IS蒂宾根 |
2013 |
||
4 |
Graduate Summer School: Computer Vision 研究生暑期学校:计算机视觉 |
Lots of Legends, IPAM-UCLA很多传奇,IPAM-UCLA |
2013 |
||
5. |
Machine Learning Summer School 机器学习暑期学校 |
Lots of Legends, Reykjavik University很多传奇,雷克雅未克大学 |
2014 |
||
6. |
Machine Learning Summer School 机器学习暑期学校 |
Lots of Legends, Pittsburgh传奇人物,匹兹堡 |
2014 |
||
7. |
Deep Learning Summer School 深度学习暑期学校 |
Lots of Legends, Université de Montréal蒙特利尔大学传奇地段 |
2015 |
||
8. |
Biomedical Image Analysis Summer School 生物医学图像分析暑期学校 |
Lots of Legends, CentraleSupelec, ParisLots of Legends,CentraleSupreme,巴黎 |
|
2015 |
|
9. |
Mathematics of Signal Processing 信号处理数学 |
Lots of Legends, Hausdorff Institute for MathematicsHausdorff Institute for Mathematics(豪斯多夫数学研究所) |
2016 |
||
10. |
Microsoft Research - Machine Learning Course Microsoft研究-机器学习课程 |
S V N Vishwanathan and Prateek Jain MS-ResearchS V N Vishwanathan和Prateek Jain MS-Research |
|
2016 |
|
11. |
Deep Learning Summer School 深度学习暑期学校 |
Lots of Legends, Université de Montréal蒙特利尔大学传奇地段 |
2016 |
||
12. |
Lisbon Machine Learning School 里斯本机器学习学校 |
Lots of Legends, Instituto Superior Técnico, PortugalLots of Legends,Instituto Superior Tecnologico,葡萄牙 |
2016 |
||
13. |
Machine Learning Advances and Applications Seminar 机器学习进展与应用研讨会 |
Lots of Legends, Fields Institute, University of Toronto多伦多大学菲尔兹研究所 |
2016-2017 |
||
14. |
Machine Learning Advances and Applications Seminar 机器学习进展与应用研讨会 |
Lots of Legends, Fields Institute, University of Toronto多伦多大学菲尔兹研究所 |
2017-2018 |
||
15. |
Machine Learning Summer School 机器学习暑期学校 |
Lots of Legends, MPI-IS TübingenLOTS OF LEGEND,MPI—IS蒂宾根 |
2017 |
||
16. |
Representation Learning 表示学习 |
Lots of Legends, Simons InstituteSimons Institute的许多传奇 |
2017 |
||
17. |
Foundations of Machine Learning 机器学习的基础 |
Lots of Legends, Simons InstituteSimons Institute的许多传奇 |
2017 |
||
18. |
Optimization, Statistics, and Uncertainty 优化、统计和不确定性 |
Lots of Legends, Simons InstituteSimons Institute的许多传奇 |
2017 |
||
19. |
Deep Learning: Theory, Algorithms, and Applications 深度学习:理论、算法与应用 |
Lots of Legends, TU-Berlin很多传奇,TU-Berlin |
2017 |
||
20. |
Deep Learning and Reinforcement Learning Summer School 深度学习和强化学习暑期学校 |
Lots of Legends, Université de Montréal蒙特利尔大学传奇地段 |
2017 |
||
21. |
Statistical Physics Methods in Machine Learning 机器学习中的统计物理方法 |
Lots of Legends, International Centre for Theoretical Sciences, TIFR国际理论科学中心(International Centre for Theoretical Sciences) |
2017 |
||
22. |
Lisbon Machine Learning School 里斯本机器学习学校 |
Lots of Legends, Instituto Superior Técnico, PortugalLots of Legends,Instituto Superior Tecnologico,葡萄牙 |
2017 |
||
23. |
Interactive Learning 互动学习 |
Lots of Legends, Simons Institute, Berkeley大量的传奇,西蒙斯研究所,伯克利 |
2017 |
||
24. |
Computational Challenges in Machine Learning 机器学习中的计算挑战 |
Lots of Legends, Simons Institute, Berkeley大量的传奇,西蒙斯研究所,伯克利 |
2017 |
||
25. |
Foundations of Data Science 数据科学基础 |
Lots of Legends, Simons InstituteSimons Institute的许多传奇 |
2018 |
||
26. |
Deep Learning and Bayesian Methods 深度学习和贝叶斯方法 |
Lots of Legends, HSE Moscow很多传奇,HSE莫斯科 |
2018 |
||
27. |
New Deep Learning Techniques 新的深度学习技术 |
Lots of Legends, IPAM UCLA很多传奇,IPAM UCLA |
2018 |
||
28. |
Deep Learning and Reinforcement Learning Summer School 深度学习和强化学习暑期学校 |
Lots of Legends, University of TorontoLots of Legends,多伦多大学 |
2018 |
||
29. |
Machine Learning Summer School 机器学习暑期学校 |
Lots of Legends, Universidad Autónoma de Madrid, Spain西班牙马德里自治大学《传奇地段》 |
2018 |
||
30. |
Theoretical Basis of Machine Learning 机器学习的理论基础 |
Lots of Legends, International Centre for Theoretical Sciences, TIFR国际理论科学中心(International Centre for Theoretical Sciences) |
Lecture-Videos YouTube-Videos 讲座视频 YouTube视频 |
2018 |
|
31. |
Polish View on Machine Learning 波兰对机器学习的看法 |
Lots of Legends, Warsaw很多传奇,华沙 |
2018 |
||
32. |
Big Data Analysis in Astronomy 天文学大数据分析 |
Lots of Legends, Tenerife很多传奇,特内里费岛 |
2018 |
||
33. |
Machine Learning Advances and Applications Seminar 机器学习进展与应用研讨会 |
Lots of Legends, Fields Institute, University of Toronto多伦多大学菲尔兹研究所 |
2018-2019 |
||
34. |
MIFODS- ML, Stats, ToC seminar MIFODS- ML,Stats,ToC研讨会 |
Lots of Legends, MIT很多传奇,MIT |
2018-2019 |
||
35. |
Learning Machines Seminar Series 学习机器研讨会系列 |
Lots of Legends, Cornell TechCornell Tech的传奇人物 |
2018-now2018-现在 |
||
36. |
Machine Learning Summer School 机器学习暑期学校 |
Lots of Legends, South Africa很多传奇,南非 |
2019 |
||
37. |
Deep Learning Boot Camp 深度学习靴子营 |
Lots of Legends, Simons Institute, Berkeley大量的传奇,西蒙斯研究所,伯克利 |
2019 |
||
38. |
Frontiers of Deep Learning 深度学习前沿 |
Lots of Legends, Simons Institute, Berkeley大量的传奇,西蒙斯研究所,伯克利 |
2019 |
||
39. |
Mathematics of data: Structured representations for sensing, approximation and learning 数据数学:感知、近似和学习的结构化表示 |
Lots of Legends, The Alan Turing Institute, London大量的传奇,艾伦图灵研究所,伦敦 |
2019 |
||
40. |
Deep Learning and Bayesian Methods 深度学习和贝叶斯方法 |
Lots of Legends, HSE Moscow很多传奇,HSE莫斯科 |
2019 |
||
41. |
The Mathematics of Deep Learning and Data Science 深度学习和数据科学的数学 |
Lots of Legends, Isaac Newton Institute, Cambridge大量的传说,艾萨克牛顿研究所,剑桥 |
2019 |
||
42. |
Geometry of Deep Learning 深度学习的几何 |
Lots of Legends, MSR Redmond很多传奇,MSR雷德蒙 |
2019 |
||
43. |
Deep Learning for Science School 深度学习科学学院 |
Many folks, LBNL, Berkeley很多人,LBNL,伯克利 |
2019 |
||
44. |
Emerging Challenges in Deep Learning 深度学习面临的新挑战 |
Lots of Legends, Simons Institute, Berkeley大量的传奇,西蒙斯研究所,伯克利 |
2019 |
||
45. |
Full Stack Deep Learning 全栈深度学习 |
Pieter Abbeel and many others, UC BerkeleyPieter Abbeel和其他许多人,加州大学伯克利分校 |
2019 |
||
46. |
Algorithmic and Theoretical aspects of Machine Learning 机器学习的数学和理论方面 |
Lots of legends, IIIT-Bengaluru很多传说,IIIT-Bengkanu |
2019 |
||
47. |
Deep Learning and Reinforcement Learning Summer School 深度学习和强化学习暑期学校 |
Lots of Legends, AMII, Edmonton, CanadaLots of Legends,AMII,埃德蒙顿,加拿大 |
2019 |
||
48. |
Mathematics of Machine Learning - Summer Graduate School 机器学习数学-暑期研究生院 |
Lots of Legends, University of Washington很多传奇人物,华盛顿大学 |
2019 |
||
49. |
Workshop on Theory of Deep Learning: Where next? 深度学习理论研讨会:下一步在哪里? |
Lots of Legends, IAS, Princeton UniversityLots of Legends,IAS,普林斯顿大学 |
2019 |
||
50. |
Computational Vision Summer School 计算机视觉暑期学校 |
Lots of Legends, Black Forest, Germany很多传说,黑森林,德国 |
2019 |
||
51. |
Learning under complex structure 复杂结构下的学习 |
Lots of Legends, MIT很多传奇,MIT |
2020 |
||
52. |
Machine Learning Summer School 机器学习暑期学校 |
Lots of Legends, MPI-IS Tübingen (virtual)LOTS OF LEGEND,MPI—IS Tübingen(虚拟) |
SS2020 |
||
53. |
Eastern European Machine Learning Summer School 东欧机器学习暑期学校 |
Lots of Legends, Kraków, Poland (virtual)Lots of Legends,克拉科夫,波兰(虚拟) |
S2020 |
||
54. |
Lisbon Machine Learning Summer School 里斯本机器学习暑期学校 |
Lots of Legends, Lisbon, Portugal (virtual)Lots of Legends,里斯本,葡萄牙(虚拟) |
S2020 |
||
55. |
Workshop on New Directions in Optimization, Statistics and Machine Learning 优化、统计和机器学习新方向研讨会 |
Lots of Legends, Institute of Advanced Study, Princeton普林斯顿高等研究院(Institute of Advanced Study,Princeton) |
2020 |
||
56. |
Mediterranean Machine Learning School 地中海机器学习学校 |
Lots of Legends, Italy (virtual)Lots of Legends,意大利(虚拟) |
2021 |
||
57. |
Mathematics of Machine Learning - One World Seminar 机器学习数学-同一个世界研讨会 |
Lots of Legends, Virtual很多传奇,虚拟 |
2020 - now2020 -现在 |
||
58. |
Deep Learning Theory Summer School 深度学习理论暑期学校 |
Lots of Legends, Princeton University (virtual)Lots of Legends,普林斯顿大学(虚拟) |
2021 |
||
13.Bird’s Eye view of A(G)#
S.No |
Course Name课程名称 |
University/Instructor(s)大学/讲师 |
Course WebPage课程网页 |
Lecture Videos讲座视频 |
Year年 |
---|---|---|---|---|---|
1. |
Artificial General Intelligence 人工通用智能 |
Lots of Legends, MIT很多传奇,MIT |
2018-2019 |
||
2. |
AI Podcast |
Lots of Legends, MIT很多传奇,MIT |
2018-2019 |
||
3. |
NYU - AI Seminars 纽约大学-人工智能研讨会 |
Lots of Legends, NYU很多传奇,纽约大学 |
2017-now2017年至今 |
||
4. |
Deep Learning: Alchemy or Science? 深度学习:炼金术还是科学? |
Lots of Legends, Institute for Advanced Study, Princeton普林斯顿高等研究院(Institute for Advanced Study,Princeton) |
2019 |
||